
The CernVM File System

Jakob Blomer Predrag Buncic René Meusel

jblomer@cern.ch

Revision 2.1-0

Technical Report
January 2013

jblomer@cern.ch

Abstract

The CernVM File System (CernVM-FS) provides a scalable, reliable and low-
maintenance software distribution service. It was developed to assist High Energy
Physics (HEP) collaborations to deploy software on the worldwide-distributed com-
puting infrastructure used to run data processing applications. CernVM-FS is
implemented as a POSIX read-only file system in user space (a FUSE module). Files
and directories are hosted on standard web servers and mounted in the universal
namespace /cvmfs. Internally, it uses content-addressable storage and Merkle trees
in order to maintain file data and meta-data. CernVM-FS uses outgoing HTTP
connections only, thereby it avoids most of the firewall issues of other network file
systems. It transfers data and meta-data on demand and verifies data integrity by
cryptographic a hash.

By means of aggressive caching and reduction of latency, CernVM-FS focuses
specifically on the software use case. Software usually comprises many small files that
are frequently opened and read as a whole. Furthermore, the software use case includes
frequent look-ups for files in multiple directories when search paths are examined.

CernVM-FS is actively used by small and large HEP collaborations. In many cases,
it replaces package managers and shared software areas on cluster file systems as means
to distribute the software used to process experiment data.

Contents

1. Overview 1

2. Getting Started 4
2.1. Getting the Software . 4
2.2. Installation . 4

2.2.1. Linux . 4
2.2.2. Mac OS X . 5

2.3. Usage . 6
2.4. Debugging Hints . 6

3. Client Configuration 7
3.1. Structure of /etc/cvmfs . 7
3.2. Mounting . 7

3.2.1. Private Mount Points . 8
3.3. Cache Settings . 9
3.4. Network Settings . 9

3.4.1. Stratum 1 List . 9
3.4.2. Proxy Lists . 10
3.4.3. Timeouts . 10

3.5. NFS Server Mode . 11
3.6. Hotpatching and Reloading . 12
3.7. Auxiliary Tools . 12

3.7.1. cvmfs_fsck . 12
3.7.2. cvmfs_config . 13
3.7.3. cvmfs_talk . 13
3.7.4. Other . 14

3.8. Debug Logs . 14

4. Setting up a Local Squid Proxy 15

5. Creating a Repository (Stratum 0) 17
5.1. Publishing a new Repository Revision 17
5.2. Requirements for a new Repository . 18
5.3. CernVM-FS Repository Creation and Updating 18

5.3.1. Repository Creation . 19
5.3.2. Repository Update . 19

ii

6. Setting up a Replica Server (Stratum 1) 20
6.1. Recommended Setup . 20
6.2. Squid Configuration . 22
6.3. Monitoring . 23

7. Implementation Notes 24
7.1. File Catalog . 24

7.1.1. Nested Catalogs . 24
7.1.2. Catalog Statistics . 26
7.1.3. Catalog Signature . 27

7.2. Use of HTTP . 27
7.2.1. DoS Protection . 29
7.2.2. Keep-Alive . 29
7.2.3. Cache Control . 29
7.2.4. Identification Header . 30

7.3. Disk Cache . 30
7.4. File System Traces . 31
7.5. NFS Maps . 32
7.6. Loader . 32
7.7. File System Interface . 33

7.7.1. mount . 33
7.7.2. getattr and lookup . 33
7.7.3. readlink . 33
7.7.4. readdir . 34
7.7.5. open / read . 34
7.7.6. getxattr . 34

7.8. Repository Publishing . 35
7.8.1. Read-write Interface using a Union File System 35

A. Available RPMs 37

B. CernVM-FS Parameters 38
B.1. Client parameters . 38
B.2. Server parameters . 39

Bibliography 40

1. Overview

The CernVM File System (CernVM-FS) is a read-only file system designed to
deliver high energy physics (HEP) experiment analysis software onto virtual machines
and grid worker nodes in a fast, scalable, and reliable way. Files and file metadata
are downloaded on demand and aggressively cached. For the distribution of files,
CernVM-FS uses a standard HTTP transport, which allows exploitation of a variety
of web caches, including commercial content delivery networks. CernVM-FS ensures
data authenticity and integrity over these possibly untrusted caches and connections.

The CernVM-FS software comprises client-side software to mount “CernVM-FS
repositories” (similar to AFS volumes) as well as a server-side toolkit to create such
distributable CernVM-FS repositories. Figure 1.1 shows an overview of software
distribution with CernVM-FS. Figure 1.2 shows how CernVM-FS interlocks with
Fuse and a web server in order to deliver files.

The first implementation of CernVM-FS was based on grow-fs [TL05,CGL+10],
which was originally provided as one of the private file system options available in
Parrot. Parrot traps the system I/O calls and that is resulting in a performance penalty
and occasional compatibility problems with some applications. The principal differences
of CernVM-FS compared to grow-fs are:

∙ Use of the the Fuse kernel module [HS] that comes with in-kernel caching of file
data and file attributes.

∙ Use of a content addressable storage format resulting in immutable files and
automatic file de-duplication

∙ Capability to work in offline mode providing that all required files are cached.

∙ Possibility to split a directory hierarchy into sub catalogues at user-defined levels.

∙ Transparent file compression/decompression.

∙ Dynamical expansion of environment variables embedded in symbolic links.

∙ Digitally signed repositories.

∙ Automatic updates of file catalogs controlled by a time to live stored inside file
catalogs

∙ Automatic server selection.

∙ Random selection from a set of forward proxy servers, which results in automatic
load-balancing of proxy servers

1

1. Overview

Operating System &
Applications

CernVM-FS

OS Kernel
Fuse

HTTP Content
Distribution

Network

File System Buffers CernVM-FS
Hard Disk Cache

CernVM-FS “Repository”
(All Releases Available)

Figure 1.1.: A CernVM-FS client provides a virtual file system that loads data only
on access. In this example, all releases of a sofware package (such as an
HEP experiment framework) are hosted as a CernVM-FS repository on
a web server.

In contrast to general purpose network file systems such as nfs or AFS, CernVM-
FS is particularly crafted for fast and scalable software distribution. Running and
compiling software that is hosted on shared areas is typically hard for general purpose
network file systems.

In order to create and update a CernVM-FS repository, a distinguished machine,
the so-called Release Manager Machine, is used. On such a release manager machine,
a CernVM-FS repository is mounted in read/write mode by means of a union file
system [WDG+04]. The union file system overlays the CernVM-FS read-only mount
point by a writable scratch area. The CernVM-FS server tool kit merges changes
written to the scratch area into the CernVM-FS repository. Merging and publishing
changes can be triggered at user-defined points in time; it is an atomic operation. As
such, a CernVM-FS repository is similar to a repository in the sense of a versioning
system.

2

1. Overview

open(/ChangeLog)

glibc

VFS
inode cache
dentry cache

Buffer cache ext3

NFS

...

Fuse

libfuse

CernVM-FS

user space

kernel space
syscall /dev/fuse

SHA1

file descr.fd HTTP GET

inflate+verify

Figure 1.2.: Opening a file on CernVM-FS. CernVM-FS resolves the name by means
of an SQLite catalog, which is prepended by a memory cache. Downloaded
files are verified against the cryptographic hash of the corresponding catalog
entry. The read() and the stat() system call can be entirely served from
the in-kernel file system buffers.

3

2. Getting Started

This section describes how to install the CernVM-FS client. CernVM-FS is supported
on Scientific Linux 5 and 6, Ubuntu 12.04, openSuSE 12.2, Fedora 17, and Mac OS X.

2.1. Getting the Software
The CernVM-FS source code and binary packages are available under https://
cernvm.cern.ch/portal/downloads. Binary packages are produced for rpm, dpkg,
and Mac OS X (.pkg). yum repositories for 64 bit and 32 bit Scientific Linux 5 and 6 are
available under http://cvmrepo.web.cern.ch/cvmrepo/yum. The cvmfs-release
packages can be used to add a these yum repositories to the local yum installation.
The cvmfs-release packages are available under https://cernvm.cern.ch/portal/
downloads.

The CernVM-FS client is not relocatable and needs to be installed under /usr. In
order to compile and install from sources, use the following cmake command:

cmake -DCMAKE_INSTALL_PREFIX:PATH=/usr .
make
sudo make install

2.2. Installation

2.2.1. Linux
To install, proceed according to the following steps:

Step 1 Install the CernVM-FS packages. With yum, run

yum install cvmfs-keys cvmfs cvmfs-init-scripts.

If yum does not show the latest packages, clean the yum cache by yum clean
all. Use rpm -vi to install the packages using just rpm. On Ubuntu, use dpkg
-i on the cvmfs .deb package.

Step 2 For the base setup, run cvmfs_config setup. Alternatively, you can do the
base setup by hand: ensure that user_allow_other is set in /etc/fuse.conf and
ensure that /cvmfs /etc/auto.cvmfs is set in /etc/auto.master. If you migrate
from a previous version of CernVM-FS, check the release notes if there is
anything special to do for migration.

4

https://cernvm.cern.ch/portal/downloads
https://cernvm.cern.ch/portal/downloads
http://cvmrepo.web.cern.ch/cvmrepo/yum
https://cernvm.cern.ch/portal/downloads
https://cernvm.cern.ch/portal/downloads

2. Getting Started

Step 3 Create /etc/cvmfs/default.local and open the file for editing.

Step 4 Select the desired repositories by setting CVMFS_REPOSITORIES=repo1,repo2,....
For ATLAS, for instance, set

CVMFS_REPOSITORIES=atlas.cern.ch,atlas-condb.cern.ch,grid.cern.ch

Specify the HTTP proxy servers on your site with

CVMFS_HTTP_PROXY="http://myproxy1:port|http://myproxy2:port"

For the syntax of more complex HTTP proxy settings, see Section ??. Make
sure your local Squid servers allow access to all the Stratum 1 web servers 4.
For Cern repositories, the Stratum 1 web servers are listed in /etc/cvmfs/do-
main.d/cern.ch.conf.

Step 5 Check if CernVM-FS mounts the specified repositories by cvmfs_config
probe.

2.2.2. Mac OS X
On Mac OS X, CernVM-FS is based on Fuse4X1. It is not yet integrated with
autofs. In order to install, proceed according to the following steps:

Step 1 Install the CernVM-FS package by opening the .pkg file.

Step 2 Create /etc/cvmfs/default.local and open the file for editing.

Step 3 Select the desired repositories by setting CVMFS_REPOSITORIES=repo1,repo2,....
For CMS, for instance, set

CVMFS_REPOSITORIES=cms.cern.ch

Specify the HTTP proxy servers on your site with

CVMFS_HTTP_PROXY="http://myproxy1:port|http://myproxy2:port"

If you’re unsure about the proxy names, set CVMFS_HTTP_PROXY=DIRECT.

Step 4 Mount your repositories like

sudo mkdir -p /cvmfs/cms.cern.ch
sudo mount -t cvmfs cms.cern.ch /cvmfs/cms.cern.ch

1http://fuse4x.github.com

5

http://fuse4x.github.com

2. Getting Started

2.3. Usage
The CernVM-FS repositories are located under /cvmfs. Each repository is identified
by a fully qualified repository name. The fully qualified repository name consists of a
repository identifier and a domain name, similar to DNS records [Moc87]. The domain
part of the fully qualified repository name indicates the location of repository creation
and maintenance. For the ATLAS experiment software, for instance, the fully qualified
repository name is atlas.cern.ch although the hosting web servers are spread around
the world.

Mounting and un-mounting of the CernVM-FS is controlled by autofs and
automount. That is, starting from the base directory /cvmfs different repositories are
mounted automatically just by accessing them. For instance, running the command
ls /cvmfs/atlas.cern.ch will mount the ATLAS software repository. This directory
gets automatically unmounted after some automount-defined idle time.

2.4. Debugging Hints
In order to check for common misconfigurations in the base setup, run

cvmfs_config chksetup

CernVM-FS gathers its configuration parameter from various configuration files that
can overwrite each others settings (default configuration, domain specific configuration,
local setup, . . .). To show the effective configuration for repository.cern.ch, run

cvmfs_config showconfig repository.cern.ch

In order to exclude autofs/automounter as a source of problems, you can try to
mount repository.cern.ch manually by

mkdir -p /mnt/cvmfs
mount -t cvmfs repository.cern.ch /mnt/cvmfs

In order to exclude SELinux as a source of problems, you can try mounting after
SELinux has been disabled by

/usr/sbin/setenforce 0

Once you sorted out a problem, make sure that you do not get the original error
served from the file system buffers by

service autofs restart

In case you need additional assistance, please don’t hesitate to contact us at cernvm.
support@cern.ch. Together with the problem description, please send the system
information tarball created by cvmfs_config bugreport.

6

cernvm.support@cern.ch
cernvm.support@cern.ch

3. Client Configuration

3.1. Structure of /etc/cvmfs
The local configuration of CernVM-FS is controlled by several files in /etc/cvmfs
listed in Table 3.1. For every .conf file except for site.conf you can create a corresponding
.local file having the same prefix in order to customize the configuration. The .local file
will be sourced after the corresponding .conf file.

In a typical installation, a handful of parameters need to be set in /etc/cvmfs/de-
fault.local. Most likely, this is the list of repositories (CVMFS_REPOSITORIES), HTTP
proxies (see Section 3.4), and perhaps the cache directory and the cache quota (see
Section 3.3) In a few cases, one might change a parameter for a specific domain or
a specific repository, e. g. provide an exclusive cache for a specific repository (see
Section 3.3).

The .conf and .local configuration files are key-value pairs in the form PARAMETER=value.
They are sourced by /bin/sh. Hence, a limited set of shell commands can be used
inside these files including comments, if clauses, parameter evaluation, and shell
math ($((...))). Special characters have to be quoted. For instance, instead of
CVMFS_HTTP_PROXY=p1;p2, write CVMFS_HTTP_PROXY=’p1;p2’ in order to avoid pars-
ing errors. For a list of all parameters, see Appendix B.

3.2. Mounting
Typically, mounting of CernVM-FS repositories is handled by autofs. Just by
accessing a repository directory under /cvmfs (e. g. /cvmfs/atlas.cern.ch), autofs will
take care of mounting. autofs will also automatically unmount a repository if it is
not used for a while.

Instead of using autofs, CernVM-FS repositories can be mounted manually with
the system’s mount command. In order to do so, use the cvmfs file system type, like

mount -t cvmfs atlas /cvmfs/atlas.cern.ch

Likewise, CernVM-FS repositories can be mounted through entries in /etc/fstab. A
sample entry in /etc/fstab:

atlas.cern.ch /mnt/test cvmfs defaults 0 0

Every mount point corresponds to a CernVM-FS process. Using autofs or the
system’s mount command, every repository can only be mounted once. Otherwise
multiple CernVM-FS processes would collide in the same cache location. If a repository

7

3. Client Configuration

File Purpose

config.sh Set of internal helper functions
default.conf Set of parameters reflecting the standard configu-

ration
site.conf Site specific set of parameters that overwrites the

standard configuration. This file is used by the
CernVM contextualization.

domain.d/$domain.conf Domain-specific parameters and implementations
of the functions in config.sh

config.d/$repository.conf Repository-specific parameters and implementa-
tions of the functions in config.sh

keys/*.pub Public keys used to verify the digital signature of
file catalogs

Table 3.1.: List of configuration files for CernVM-FS in /etc/cvmfs

is needed under several paths, use a bind mount or use a private file system mount
point (see Section 3.2.1).

3.2.1. Private Mount Points
In contrast to the system’s mount command which requires root privileges, CernVM-FS
can also be mounted like other Fuse file systems by normal users. In this case, CernVM-
FS uses parameters from one or several user-provided config files instead of using the
files under /etc/cvmfs. CernVM-FS private mount points do not appear as cvmfs2
file systems but as fuse file systems. The cvmfs_config and cvmfs_talk commands
do not affect privately mounted CernVM-FS repositories. On an interactive machine,
private mount points are for instance unaffected by an administrator unmounting all
system’s CernVM-FS mount points by cvmfs_config unmount.

In order to mount CernVM-FS privately, use the cvmfs2 command like

cvmfs2 -o config=myparams.conf atlas.cern.ch /home/user/myatlas

A minimal sample myparams.conf file could look like this:

CVMFS_CACHE_BASE=/home/user/mycache
CVMFS_SERVER_URL=http://cvmfs-stratum-one.cern.ch/opt/atlas
CVMFS_HTTP_PROXY=DIRECT
CVMFS_PUBLIC_KEY=/etc/cvmfs/keys/cern.ch.pub:\

/etc/cvmfs/keys/cern-it1.cern.ch.pub:\
/etc/cvmfs/keys/cern-it3.cern.ch.pub

Make sure to use absolute path names for the mount point and for the cache directory.
Use fusermount -u in order to unmount a privately mounted CernVM-FS repository.

8

3. Client Configuration

3.3. Cache Settings
Downloaded files will be stored in a local cache directory. The CernVM-FS cache has
a soft quota; as a safety margin, the partition hosting the cache should provide 10 %
more space than the soft quota limit. Once the quota limit is reached, CernVM-FS
will automatically remove files from the cache according to the least recently used
policy [PS06]. Removal of files is performed bunch-wise until half of the maximum
cache size has been freed. Currently, CernVM-FS is not able to access files in the
repository that are larger than half of the cache quota. The quota limit can be set
in Megabytes by CVMFS_QUOTA_LIMIT. For typical repositories, a few Gigabytes make
a good quota limit. For repositories hosted at cern, quota recommendations can be
found under http://cernvm.cern.ch/portal/cvmfs/examples.

The cache directory needs to be on a local file system in order to allow each host
the accurate accounting of the cache contents; on a network file system, the cache
can potentially be modified by other hosts. Furthermore, the cache directory is used
to create (transient) sockets and pipes, which is usually only supported by a local
file system such as ext3 or XFS. The location of the cache directory can be set by
CVMFS_CACHE_BASE.

Each repository can either have an exclusive cache or join the CernVM-FS shared
cache. The shared cache enforces a common quota for all repositories used on the host.
File duplicates across repositories are stored only once in the shared cache. The quota
limit of the shared directory should be at least the maximum of the recommended
limits of its participating repositories. In order to have a repository not join the shared
cache but use an exclusive cache, set CVMFS_SHARED_CACHE=no.

3.4. Network Settings
CernVM-FS uses HTTP [BLFF96,FGM+99] for data transfer. Repository data can
be replicated to multiple web servers and cached by standard web proxies such as
Squid. In a typical setup, repositories are replicated to a handful of web servers in
different locations. These replicas form the CernVM-FS Stratum 1 service, whereas
the replication source server is the CernVM-FS Stratum 0 server. On every cluster
of machines, there should be two or more web proxy servers that CernVM-FS can
use (see Section 4). These site-local web proxies reduce the network latency for the
CernVM-FS clients and they reduce the load for the Stratum 1 service. CernVM-FS
supports choosing a random proxy for load-balancing and automatic fail-over to other
hosts and proxies in case of network errors. Roaming clients can connect directly to
the Stratum 1 service.

3.4.1. Stratum 1 List
Tp specify the Stratum 1 servers, set CVMFS_SERVER_URL to a semicolon-separated list
of known replica servers (enclose in quotes). The so defined URLs are organized as a
ring buffer. Whenever download of files fails from a server, CernVM-FS automatically

9

http://cernvm.cern.ch/portal/cvmfs/examples

3. Client Configuration

switches to the next mirror server. For repositories under the cern.ch domain, the
Stratum 1 servers are specified in /etc/cvmfs/domain.d/cern.ch.conf.

It is recommended to adjust the order of Stratum 1 server so that the closest
servers are used with priority. For roaming clients (i. e. clients not using a proxy
server), the Stratum 1 servers can be automatically sorted according to round trip
time by cvmfs_talk host probe (see Section 3.7). Otherwise, the proxy server would
invalidate round trip time measurement.

The special sequence @org@ in the CVMFS_SERVER_URL string is replaced by the reposi-
tory name (not fully qualified). That allows to use the same parameter for many reposito-
ries hosted under the same domain. For instance, http://cvmfs-stratum-one.cern.ch/opt/@org@
can resolve to http://cvmfs-stratum-one.cern.ch/opt/atlas, http://cvmfs-stratum-one.
cern.ch/opt/cms, and so on depending on the repository that is being mounted. The
same works for the sequence @fqrn@ with fully qualified repository names (e. g. at-
las.cern.cn, cms.cern.ch, . . .).

3.4.2. Proxy Lists
CernVM-FS uses a dedicated HTTP proxy configuration, independent from system-
wide settings. Instead of a single proxy, CernVM-FS uses a chain of load-balanced
proxy groups. Proxies within the same proxy group are considered as a load-balance
group and a proxy is selected randomly. If a proxy fails, CernVM-FS automatically
switches to another proxy from the current group. If all proxies from a group have
failed, CernVM-FS switches to the next proxy group. After probing the last proxy
group in the chain, the first proxy is probed again. To avoid endless loops, for each file
download the number of switches is restricted by the total number of proxies.

The chain of proxy groups is specified by a string of semicolon separated entries,
each group is a list of pipe separated hostnames1. The DIRECT keyword for a hostname
avoids using proxies.

Multiple proxy groups are often organized as a primary proxy group at the local
site and backup proxy groups at remote sites. In order to avoid CernVM-FS being
stuck with proxies at a remote site after a fail-over, CernVM-FS will automatically
retry to use proxies from the primary group after some time. The delay for re-trying
a proxies from the primary group is set in seconds by CVMFS_PROXY_RESET_AFTER.
The distinction of primary and backup proxy groups can be turned off by setting this
parameter to 0.

3.4.3. Timeouts
CernVM-FS tries to gracefully recover from broken network links and temporarily
overloaded paths. The timeout for connection attempts and for very slow downloads can
be set by CVMFS_TIMEOUT and CVMFS_TIMEOUT_DIRECT. The two timeout parameters
apply to a connection with a proxy server and to a direct connection to a Stratum 1
server, respectively. A download is considered to be “very slow” if the transfer rate is

1The usual proxy notation rules apply, like http://proxy1:8080|http://proxy2:8080;DIRECT

10

http://cvmfs-stratum-one.cern.ch/opt/atlas
http://cvmfs-stratum-one.cern.ch/opt/cms
http://cvmfs-stratum-one.cern.ch/opt/cms

3. Client Configuration

below 100 Bytes/second for more than the timeout interval. A very slow download is
treated like a broken connection.

On timeout errors and on connection failures (but not on name resolving failures),
CernVM-FS will retry the path using an exponential backoff. This introduces a jitter
in case there are many concurrent requests by a cluster of nodes, allowing a proxy
server or web server to serve all the nodes consecutively. CVMFS_MAX_RETRIES sets
the number of retries on a given path before CernVM-FS tries to switch to another
proxy or host. The overall number of requests with a given proxy/host combination
is $CVMFS_MAX_RETRIES+1. CVMFS_BACKOFF_INIT sets the maximum initial backoff in
seconds. The actual initial backoff is picked with milliseconds precision randomly in
the interval [1, $CVMFS_BACKOFF_INIT · 1000]. With every retry, the backoff is
then doubled.

3.5. NFS Server Mode
In case there is no local hard disk space available on a cluster of worker nodes, a single
CernVM-FS client can be exported via NFS [CPS95,SCR+03] to these worker nodes.
This mode of deployment will inevitably introduce a performance bottleneck and a
single point of failure and should be only used if necessary.

NFS export requires Linux kernel >= 2.6.27 on the NFS server. It works for Scientific
Linux 6 but not for Scientific Linux 5. NFS clients can run both SL5 and SL6.

For proper NFS support, set CVMFS_NFS_SOURCE=yes. When this option is enabled,
upon mount an additionally directory nfs_maps.$repository_name appears in the
CernVM-FS cache directory. These NFS maps store the virtual inode CernVM-FS
issues for any accessed path. The virtual inode may be requested by NFS clients
anytime later. As the NFS server has no control over the lifetime of client caches,
entries in the NFS maps cannot be removed.

Typically, every entry in the NFS maps requires some 150-200 Bytes. A recursive
find on /cvmfs/atlas.cern.ch with 25 million entries, for instance, would add up 5 GB
in the cache directory. For a CernVM-FS instance that is exported via NFS, the
safety margin for the NFS maps needs be taken into account. It also might be necessary
to monitor the actual space consumption.

For decent performance, the amount of memory given to the meta-data cache should
be increased. By default, this is 16M. It can be increased, for instance, to 256M by
setting CVMFS_MEMCACHE_SIZE to 256. Furthermore, the maximum number of download
retries should be increased to at least 2 for the NFS use case.

A sample entry /etc/exports

/cvmfs/atlas.cern.ch 172.16.192.0/24(ro,sync,no_root_squash,\
no_subtree_check,fsid=101)

A sample entry /etc/fstab entry on a client:

172.16.192.210:/cvmfs/atlas.cern.ch /cvmfs/atlas.cern.ch nfs \
nfsvers=3,noatime,ac,actimeo=60 0 0

11

3. Client Configuration

3.6. Hotpatching and Reloading
By hotpatching a running CernVM-FS instance, most of the code can be reloaded
without unmounting the file system. The current active code is unloaded and the code
from the currently installed binaries is reloaded. Hotpatching is logged to syslog. Since
CernVM-FS is re-initialized during hotpatching and configuration parameters are
re-read, hotpatching can be also seen as a “reload”.

Hotpatching has to be done for all repositories concurrently by

cvmfs_config [-c] reload

The optional parameter -c specifies if the CernVM-FS cache should be wiped out
during the hotpatch. Reloading of the parameters of a specific repository can be done
like

cvmfs_config reload atlas.cern.ch

In order to see the history of loaded CernVM-FS Fuse modules, run

cvmfs_talk hotpatch history

The currently loaded set of parameters can be shown by

cvmfs_talk parameters

The CernVM-FS packages use hotpatching in order to update previous versions.

3.7. Auxiliary Tools

3.7.1. cvmfs_fsck
CernVM-FS assumes that the local cache directory is trustworthy. However, it might
happen that files get corrupted in the cache directory caused by errors outside the
scope of CernVM-FS. CernVM-FS stores files in the local disk cache with their
cryptographic content hash key as name, which makes it fairly easy to verify file
integrity. CernVM-FS contains the cvmfs_fsck utility to do so for a specific cache
directory. Its return value is comparable to the system’s fsck. For example,

cvmfs_fsck -j 8 /var/lib/cvmfs/shared

checks all the data files and catalogs in /var/lib/cvmfs/shared using 8 concurrent
threads. Supported options are:

-v Produce more verbose output.
-j #threads Sets the number of concurrent threads that check files in the cache

directory. Defaults to 4.
-p Tries to automatically fix problems.
-f Unlinks the cache database. The database will be automatically

rebuilt by CernVM-FS on next mount.

12

3. Client Configuration

3.7.2. cvmfs_config
The cvmfs_config utility provides commands in order to setup the system for use
with CernVM-FS.

setup The setup command takes care of basic setup tasks, such as creating the cvmfs
user and allowing access to CernVM-FS mount points by all users.

chksetup The chksetup command inspects the system and the CernVM-FS configu-
ration in /etc/cvmfs for common problems.

showconfig The showconfig command prints the CernVM-FS parameters for all
repositories or for the specific repository given as argument.

stat The stat command prints file system and network statistics for currently mounted
repositories.

status The status command shows all currently mounted repositories and the process
id (PID) of the CernVM-FS processes managing a mount point.

probe The probe command tries to access /cvmfs/$repository for all repositories
specified in CVMFS_REPOSITORIES.

reload The reload command is used to reload or hotpatch CernVM-FS instances
(see Section 3.6).

unmount The unmount command unmounts all currently mounted CernVM-FS
repositories, which will only succeed if there are no open file handles on the
repositories.

wipecache The wipecache command tries to unmount all currenlty mounted CernVM-
FS repositories and, in case of success, removes all files in the CernVM-FS
cache.

bugreport The bugreport command creates a tarball with collected system information
which helps to debug a problem (see Section 2.4).

3.7.3. cvmfs_talk
The cvmfs_talk command provides a way to control a currently running CernVM-
FS process and to extract information about the status of the corresponding mount
point. Most of the commands are for special purposes only or covered by more
convenient commands, such as cvmfs_config showconfig or cvmfs_config stat.
Two commands might be of particular interest though.

cvmfs_talk cleanup 0

will, without interruption of service, immediately cleanup the cache from all files that
are not currently pinned in the cache.

cvmfs_talk internal affairs

13

3. Client Configuration

prints the internal status information and performance counters. It can be helpful for
performance engineering.

3.7.4. Other
Information about the current cache usage can be gathered using the df utility. For
repositories created with the CernVM-FS 2.1 toolchain, information about the overall
number of file system entries in the repository as well as the number of entries covered
by currently loaded meta-data can be gathered by df -i.

For the Nagios2 [SBG+08] monitoring system, a checker plugin is available under
http://cernvm.cern.ch/portal/filesystem/downloads.

3.8. Debug Logs
The cvmfs2 binary forks a watchdog process on start. Using this watchdog, CernVM-
FS is able to create a stack trace in case certain signals (such as a segmentation fault)
are received. The watchdog writes the stack trace into syslog as well as into a file
stacktrace in the cache directory.

In addition to the debugging hints in Section 2.4, CernVM-FS can be started in
debug mode. In the debug mode, CernVM-FS will log with high verbosity which
makes the debug mode unsuitable for production use. In order to turn on the debug
mode, set CVMFS_DEBUGFILE=/tmp/cvmfs.log.

2http://www.nagios.org

14

http://cernvm.cern.ch/portal/filesystem/downloads
http://www.nagios.org

4. Setting up a Local Squid Proxy

For clusters of nodes with CernVM-FS, we strongly recommend to setup two or more
Squid1 forward proxy servers [Gue99,FCAB00] as well. The forward proxies will reduce
the latency for the local worker nodes, which is critical for cold cache performance.
They also reduce the load on the Stratum 1 servers.

From what we have seen, a Squid server on commodity hardware scales well for at
least a couple of hundred worker nodes. The more RAM and hard disk you can devote
for caching the better. We have good experience with 4 GB to 8 GB of memory cache
and 50 GB to 100 GB of hard disk cache. We suggest to setup two identical Squid
servers for reliability and load-balancing. Assuming the two servers are A and B, set

CVMFS_HTTP_PROXY="http://A:3128|http://B:3128"

Squid is very powerful and has lots of configuration and tuning options. For
CernVM-FS we require only the very basic static content caching. If you already have
a Frontier Squid2 [BDLW08,DL10] installed you can use it as well for CernVM-FS.

Otherwise, cache sizes and access control needs to be configured in order to use the
Squid server with CernVM-FS. In order to do so, browse through your /etc/squid/squid.conf
and make sure the following lines appear accordingly:

collapsed_forwarding on
max_filedesc 8192
maximum_object_size 1024 MB

4 GB memory cache
cache_mem 4096 MB
maximum_object_size_in_memory 128 KB
50 GB disk cache
cache_dir ufs /var/spool/squid 50000 16 256

Furthermore, Squid needs to allow access to all Stratum 1 servers. This is controlled
through Squid ACLs. For the Stratum 1 servers for the cern.ch domain, add the
following lines to you Squid configuration:

acl cvmfs dst cvmfs-stratum-one.cern.ch
acl cvmfs dst cernvmfs.gridpp.rl.ac.uk
acl cvmfs dst cvmfs.racf.bnl.gov
acl cvmfs dst cvmfs02.grid.sinica.edu.tw

1http://www.squid-cache.org
2http://frontier.cern.ch

15

http://www.squid-cache.org
http://frontier.cern.ch

4. Setting up a Local Squid Proxy

acl cvmfs dst cvmfs.fnal.gov
acl cvmfs dst cvmfs-atlas-nightlies.cern.ch
http_access allow cvmfs

The Squid configuration can be verified by squid -k parse. Before the first service
start, the cache space on the hard disk needs to be prepared by squid -z. In order to
make the increased number of file descriptors effective for Squid, execute ulimit -n
8192 prior to starting the squid service.

16

5. Creating a Repository
(Stratum 0)

CernVM-FS is a file system with a single source of (new) data. This single source,
the repository Stratum 0, is maintained by a dedicated release manager machine. A
read-writable copy of the repository is available on the release manager machine. The
CernVM-FS server tool kit is used to publish the current state of the repository on
the release manager machine. Publishing is an atomic operation.

All data stored in CernVM-FS have to be converted into a CernVM-FS repository
during the process of publishing. The CernVM-FS repository is a form of content-
addressable storage. Conversion includes creating the file catalog(s), compressing
new and updated files and calculating content hashes. Storing the data in a content-
addressable format results in automatic file de-duplication. It furthermore simplifies
data verification and it allows for file system snapshots.

In order to provide a writable CernVM-FS repository, CernVM-FS uses a union
file system that combines a read-only CernVM-FS mount point with a writable scratch
area [WDG+04,Oka]. Figure 5.1 outlines the process of publishing a repository.

5.1. Publishing a new Repository Revision
Since the repositories may contain many file system objects1, we cannot afford to
generate an entire repository from scratch for every update. Instead, we add a writable
file system layer on top of a mounted read-only CernVM-FS repository using the
union file system AUFS [Oka]. This renders a read-only CernVM-FS mount point
writable to the user, while all performed changes are stored in a special writable scratch
area managed by AUFS. A similar approach is used by Linux Live Distributions that
are shipped on read-only media, but allow virtual editing of files where changes are
stored on a RAM disk.

If a file in the CernVM-FS repository gets changed, AUFS first copies it to the
writable volume and applies any changes to this copy (copy-on-write semantics). AUFS
will put newly created files or directories in the writable volume as well. Additionally
it creates special hidden files (called white-outs) to keep track of file deletions in the
CernVM-FS repository.

Eventually, all changes applied to the repository are stored in AUFS’s scratch
area and can be merged into the actual CernVM-FS repository by a subsequent

1For ATLAS, for example, “many” means order of 107 file system objects (i. e. number of regular
files, symbolic links, and directories).

17

5. Creating a Repository (Stratum 0)

Figure 5.1.: Updating a mounted CernVM-FS repository by overlaying it with a copy-
on-write AUFS volume. Any changes will be accumulated in a writable
volume (yellow) and can be synchronized into the CernVM-FS repository
afterwards. The file catalog contains the directory structure as well as file
metadata, symbolic links, and secure hash keys of regular files. Regular files
are compressed and renamed to their cryptographic content hash before
copied into the data store.

synchronization step. Before the actual synchronization step takes place, no changes
are applied to the CernVM-FS repository. Therefore, any unsuccessful updates to a
repository can be rolled back by simply clearing the writable file system layer of AUFS.

5.2. Requirements for a new Repository
In order to create a repository, the server and client part of CernVM-FS must be
installed on the release manager machine. Furthermore your machine should provide
an AUFS enabled Kernel as well as a running Apache2 web server. Currently we
support Scientific Linux 5 and 6 as well as Ubuntu 12.04 distributions. Please note, that
Scientific Linux 6 does not ship with an AUFS enabled kernel, therefore we provide a
compatible patched kernel as RPMs (see Appendix A).

5.3. CernVM-FS Repository Creation and Updating
The CernVM-FS server tool kit provide the versatile cvmfs_server utility in order
to perform all operations related to repository creation, updating, deletion, replication

18

5. Creating a Repository (Stratum 0)

and inspection. Please run it without any parameters to get a short documentation of
its commands.

5.3.1. Repository Creation
A new repository is created by cvmfs_server mkfs:

cvmfs_server mkfs my.repo.name

The utility will then ask you for a user that should act as the owner of the repository
and afterwards create all the infrastructure for the new CernVM-FS repository.
Additionally it will create a reasonable default configuration and generate a new release
manager certificate and software signing key. You’ll have to distribute the public key
in /etc/cvmfs/keys/my.repo.name.pub to all your client machines. The cvmfs_server
utility will use /srv/cvmfs as storage location. In case you want to use a separate
hard disk, you should mount it there upfront.

Once created, you should see your repository mounted under /cvmfs/my.repo.name
containing only a single file called new_repository. Following this step, you can
produce the first revision by going through the repository update procedure described
in the next section.

5.3.2. Repository Update
Typically a repository publisher does the following steps in order to create a new
revision of a repository:

1. Run cvmfs_server transaction to switch to a copy-on-write enabled CernVM-
FS volume

2. Make the necessary changes to the repository, e. g. add new directories, patch
certain binaries, . . .

3. Test the software installation

4. Do one of the following:

∙ Run cvmfs_server publish to finalize your new repository revision or

∙ Run cvmfs_server abort to clear all changes and start over again

5. Make the web server serve the new version of the repository directory.

CernVM-FS supports to have more than one repository on a single server machine.
In case of a multi-repository host, you need to specify which repository you want to
operate on, when running the cvmfs_server utility commands. Additionally you should
run cvmfs_server resign every 30 days to update the signatures of the repository.

19

6. Setting up a Replica Server
(Stratum 1)

While a CernVM-FS Stratum 0 repository server is able to serve clients directly, a
large number of clients is better be served by a set of Stratum 1 replica servers. Multiple
Stratum 1 servers improve the reliability, reduce the load, and protect the Stratum 0
master copy of the repository from direct accesses. Stratum 0 server, Stratum 1 servers
and the site-local proxy servers can be seen as content distribution network. Figure 6.1
shows the situation for the repositories hosted in the cern.ch domain.

A Stratum 1 server is a standard web server that uses the CernVM-FS server
toolkit to create and maintain a mirror of a CernVM-FS repository served by a
Stratum 0 server. To this end, the cvmfs_server utility provides the add-replica
command. This command will register the Stratum 0 URL and prepare the local web
server. Periodical synchronization has to be scheduled, for instance with cron, using
the cvmfs_server snapshot command. The advantage over general purpose mirroring
tools such as rSync is that all CernVM-FS file integrity verifications mechansims
from the Fuse client are reused. Additionally, by the aid of the CernVM-FS file
catalogs, the cvmfs_server utility knows beforehand (without remote listing) which
files to transfer.

In order to prevent accidental synchronization from a repository, the Stratum 0
repository maintainer has to create a .cvmfs_master_replica file in the HTTP root
directory. Also keep in mind that replication will thrash any caches that might be
between Stratum 1 and Stratum 0. A direct connection is therefore preferable.

6.1. Recommended Setup
The vast majority of HTTP requests will be served by the site’s local proxy servers.
Being a publicly available service, however, we recommend to install caching Squid
frontends in front of the Stratum 1 web server. This setup is shown in Figure 6.2

We suggest the following key parameters:

Storage. RAID-protected storage. The cvmfs_server utility should have low latency
to the storage because it runs a large number of system calls (stat()) against
it. For the local storage backends ext3/4 filesystems are preferred (rather than
XFS).

Web server. A standard Apache server. Directory listing is not required. In addition,
it is a good practice to exclude search engines from the replica web server by an
appropriate robots.txt. The work load is mainly covered by the Squid servers,

20

6. Setting up a Replica Server (Stratum 1)

Stratum 0 R/W

CERN

United
Kingdom

United
States

Taiwan

St
ra

tu
m

1

Pu
bl

ic
M

irr
ors

Proxy
Hierarchy

Proxy
Hierarchy

Figure 6.1.: CernVM-FS content distribution network for the cern.ch domain: Stra-
tum 1 replica servers are located in Europe, the U.S. and Asia. One
protected r/w instance (Stratum 0) is feeding up the public, distributed
mirror servers. A distributed hierarchy of proxy servers fetches content
from the closest public mirror server.

21

6. Setting up a Replica Server (Stratum 1)

Figure 6.2.: Recommended setup: 2 DNS load-balanced (round-robin) Squid machines
in a reverse proxy mode in front of a single storage and web server.

hence performance of the web server is not critical. However, the webserver
should be close to the storage in terms of latency.

Squid frontend. At least 2 Squid servers configured in load-balance mode as reverse
proxies for the web server. The Squid frontends should listen on ports 80 and
8000. The more RAM Squid can use for caching, the better.

6.2. Squid Configuration
The Squid configuration differs from the site-local Squids because the Stratum 1 Squid
servers are transparent to the clients (reverse proxy). The Squid server is configured
as reverse proxy for the web server. Concurrent requests for the same URL should
be collapsed into one request to the backend. Additionally, the cache sizes have to be
set. As the expiry rules are set by the web server, Squid cache expiry rules remain
unchanged.

The following lines should appear accordingly in /etc/squid/squid.conf:

http_port 80 accel
http_port 8000 accel
http_access allow all
cache_peer <APACHE_HOSTNAME> parent 80 0 no-query originserver
collapsed_forwarding on

max_filedesc 8192

cache_mem <MEM_CACHE_SIZE> MB

22

6. Setting up a Replica Server (Stratum 1)

cache_dir aufs /var/spool/squid <DISK_CACHE_SIZE in MB> 32 256
maximum_object_size 1024 MB
maximum_object_size_in_memory 8 MB

Note that http_access allow all has to be inserted before (or instead of) the line
http_access deny all.

Check the configuration syntax by squid -k parse. Create the hard disk cache
area with squid -z. In order to make the increased number of file descriptors effective
for Squid, execute ulimit -n 8192 prior to starting the squid service.

6.3. Monitoring
The cvmfs_server utility reports status and problems to stdout and stderr.

For the infrastructure, standard Nagios HTTP checks do the job. Configure it with
the URL http://$replica-server/cvmfs/$repository_name/.cvmfspublished. This
file can also be used to monitor if the same repository revision is served by the Stratum 0
server and all the Stratum 1 servers. In order to tune the hardware and cache sizes,
keep an eye on the Squid server’s CPU and I/O load.

Keep an eye on HTTP 404 errors. For normal CernVM-FS traffic, such failures
should not occur. Traffic from CernVM-FS clients is marked by an X-CVMFS2 header.

23

http://$replica-server/cvmfs/$repository_name/.cvmfspublished

7. Implementation Notes

CernVM-FS has a modular structure and relies on several open source libraries.
Figure 7.1 shows the internal building blocks of CernVM-FS. Most of these libraries
are shipped with the CernVM-FS sources and are linked statically in order to facilitate
debugging and to keep the system dependencies minimal.

7.1. File Catalog
A CernVM-FS repository is defined by its file catalog. The file catalog is an SQLite1

database [AO10] having a single table that lists files and directories together with its
metadata. The table layout is shown in Table 7.1.

In order to save space we do not store absolute paths. Instead we store MD5 [Riv92,
TC11] hash values of the absolute path names. Symbolic links are kept in the catalog.
Symbolic links may contain environment variables in the form $(VAR_NAME) that will be
dynamically resolved by CernVM-FS on access. Hardlinks are emulated by CernVM-
FS. The hardlink count is stored in the lower 32bit of the hardlinks field, a hardlink
group is stored in the higher 32 bit. If the hardlink group is greater than zero, all files
with the same hardlink group will get the same inode issued by the CernVM-FS Fuse
client. The emulated hardlinks work within the same directory, only. The SHA-1 [?]
content hash referrs to the zlib-compressed [DG96] version of the file. Flags indicate
the type of an directory entry (see Table 7.1).

A file catalog contains a time to live (TTL), stored in seconds. The catalog TTL
advises clients to check for a new version of the catalog, when expired. Checking for a
new catalog version takes place with the first file system operation on a CernVM-FS
volume after the TTL has expired. The default TTL is one hour. If a new catalog is
available, CernVM-FS delays it’s loading for the period of the CernVM-FS kernel
cache life time (default: 1 minute). During this drain-out period, the kernel caching
is turned off. The first file system operation on a CernVM-FS volume after that
additional delay will apply a new file catalog and kernel caching is turned back on.

7.1.1. Nested Catalogs
In order to keep catalog sizes reasonable2, repository subtrees may be cut and stored
as separate nested catalogs. There is no limit on the level of nesting. A reasonable
approach is to store separate software versions as separate nested catalogs. Figure 7.2
shows the directory structure which we use for the ATLAS repository.

1https://www.sqlite.org
2As a rule of thumb, file catalogs up to 25MB (compressed) are reasonably small.

24

https://www.sqlite.org

7. Implementation Notes

Building Blocks

Components

User Interface

sparsehash libcrypto zlib

leveldb libcurl c-ares

Fuse SQLite aufs

Catalog Mgr Cache Mgr Quota

Download Mgr Spooler

CernVM-FS libcvmfs cvmfs_server

Figure 7.1.: CernVM-FS block diagram.

Field Type

Path MD5 128 Bit Integer
Parent Path MD5 128 Bit Integer
Hardlinks Integer
SHA1 Content Hash 160 Bit Integer
Size Integer
Mode Integer
Last Modified Timestamp
Flags Integer
Name String
Symlink String
uid Integer
gid Integer

Flags Meaning

1 Directory
2 Transition point to a nested catalog
33 Root directory of a nested catalog
3 Regular file
4 Symbolic link

Table 7.1.: Metadata information stored per directory entry. The inode is dynamically
issued by CernVM-FS at runtime.

25

7. Implementation Notes

root

panda

software

14.5.0
...

15.6.1

tier3

gcc
...

catalog entry points

Figure 7.2.: Directory structure useds for the ATLAS repository (simplified).

When a subtree is moved into a nested catalog, its entry directory serves as transition
point for nested catalogs. This directory appears as empty directory in the parent
catalog with flags set to 2. The same path appears as root-directory in the nested
catalog with flags set to 33. Because the MD5 hash values refer to full absolute paths,
nested catalogs store the root path prefix. This prefix is prepended transparently
by CernVM-FS. The SHA-1 key of nested catalogs is stored in the parent catalog.
Therefore, the root catalog fully defines an entire repository.

Loading of nested catalogs happens on demand by CernVM-FS on the first attempt
to access of anything inside, i. e. a user won’t see the difference between a single large
catalog and several nested catalogs. While this usually avoids unnecessary catalogs to
be loaded, recursive operations like find can easily bypass this optimization.

7.1.2. Catalog Statistics
A CernVM-FS file catalog maintains several counters about its contents and the
contents of all of its nested catalogs. The idea is that the catalogs know how many
entries there are in their sub catalogs even without opening them. This way, one can
immediately tell how many entries, for instance, the entire ATLAS repository has. The
numbers are shown using the number of inodes in statvfs. So df -i shows the overall
number of entries in the repository and (as number of used inodes) the number of
entries of currently loaded catalogs. Nested catalogs create an additional entry (the
transition directory is stored in both the parent and the child catalog). File hardlinks

26

7. Implementation Notes

are still individual entries (inodes) in the cvmfs catalogs. The following counters are
maintained for both a catalog itself and for the subtree this catalog is root of:

∙ Number of regular files

∙ Number of symbolic links

∙ Number of directories

∙ Number of nested catalogs

7.1.3. Catalog Signature
In order to provide authoritative information about a repository publisher, file catalogs
are signed by an X.509 certificate. The CernVM-FS server tool kit uses a X.509
certificate together with its private key in order to sign a catalog and its nested catalogs.
It is important to note that it is sufficient to sign just the file catalog. Since every file
is listed with its SHA-1 content hash inside the catalog, we gain a secure chain and
may speak of a “signed repository”.

In order to validate file catalog signatures, CernVM-FS uses a white-list of valid
publisher certificates. The white-list contains the SHA-1 fingerprints of known publisher
certificates and a timestamp. A white-list is valid for 30 days. It is signed by a private
RSA key, which we refer to as master key. The public RSA key that corresponds to the
master key is distributed with the CernVM-FS sources and the cvmfs-keys RPM as
well as with every instance of CernVM.

In addition, CernVM-FS checks certificate fingerprints against the local blacklist
/etc/cvmfs/blacklist. The blacklisted fingerprints have to be in the same format than
the fingerprints on the white-list. The blacklist has precedence over the white-list.

As crypto engine, CernVM-FS use libcrypto from the OpenSSL project [The].
Figure 7.3 shows the trust chain with a signed repository.

7.2. Use of HTTP
The particular way of using the HTTP protocol has significant impact on the perfor-
mance and usability of CernVM-FS. If possible, CernVM-FS tries to benefit from
the HTTP/1.1 features keep-alive and cache-control. Internally, CernVM-FS uses the
libcurl library [Dan].

The HTTP behaviour affects a system with cold caches only. As soon as all necessary
files are cached, there is only network traffic when a catalog TTL expires.

The CernVM-FS download manager runs as a separate thread that handles down-
load requests asynchronously in parallel. Concurrent download requests for the same
URL are collapsed into a single request.

27

7. Implementation Notes

release

manager

certificate white-list repository

CernVM-FS +
CernVM public key

fingerprint sign catalog

sign whitelist

1
download

signed catalog +
signed whitelist

2
verify whitelist +
check fingerprint

3
download

files

4
compare secure hash
against catalog entry

Figure 7.3.: Trust chain with a signed repository.

28

7. Implementation Notes

Web Server

CernVM

S
Y

N

S
Y

N
,
A
C

K

S
Y

N

H
T

T
P

G
E
T 2

0
0

O
K

F
IN

,
A
C

K

A
C

K

F
IN

,A
C

K A
C

K
Figure 7.4.: Impact of keep-alive header on multiple file downloads.

7.2.1. DoS Protection
A subtle denial of service attack (DoS) can occur when CernVM-FS is successfully
able to download a file but fails to store it in the local cache. This situation escalates
into a DoS when the application using CernVM-FS remains in an endless loop and
tries to open a file over and over again. Such a situation is prevented by CernVM-FS
by re-trying with an exponential backoff. The backoff is triggered by consequtive
filaures to cache a downloaded file within 10 seconds.

7.2.2. Keep-Alive
Although the HTTP protocol overhead is small in terms of data volume, in high latency
networks we suffer from the bare number of requests: Each request-response cycle
has a penalty of at least the network round trip time. Using plain HTTP/1.0, this
results in at least 3 · round trip time additional running time per file download for
TCP handshake, HTTP GET, and TCP connection finalisation. By including the
Connection: Keep-Alive header into HTTP requests, we advise the HTTP server
end to keep the underlying TCP connection opened. This way, overhead ideally drops
to just round trip time for a single HTTP GET. The impact of the keep-alive feature
is shown in Figure 7.4.

This feature, of course, somewhat sabotages a server-side load-balancing. However,
exploiting the HTTP keep-alive feature does not affect scalability per se. The servers
and proxies may safely close idle connections anytime, in particular if they run out of
resources. In practice, the maximum connection duration has to be set carefully for
the HTTP deamon.

7.2.3. Cache Control
In a limited way, CernVM-FS advises intermediate web caches how to handle its
requests. Therefor it uses the Pragma: no-cache and the Cache-Control: no-cache
headers in certain cases. These cache control headers apply to both, forward proxies as
well as reverse proxies. However, this is by no means a guarantee that intermediate
proxies fetch a fresh original copy (though they should).

29

7. Implementation Notes

Field Type

SHA-1 String (hex notation)
Size Integer
Access Sequence Integer
Pinned Integer
File type (chunk or file catalog) Integer

Table 7.2.: Cache catalog table structure.

By including these headers, CernVM-FS tries to not fetch outdated cache copies.
This has to be handled with care, of course, in order to not overload the repository
source server. Only in case CernVM-FS downloads a corrupted file from a proxy
server, it retries having the HTTP no-cache header set. This way, the corrupted file
gets replaced in the proxy server by a fresh copy from the backend.

7.2.4. Identification Header
CernVM-FS sends a custom header (X−CMFS2) to be identified by the web server.
If you have set the CernVM GUID, this GUID is also transmitted.

7.3. Disk Cache
Each running CernVM-FS instance requires a local cache directory. Data are down-
loaded into a temporary files. Only at the very latest point they are renamed into their
content-addressable SHA-1 names atomically by rename().

The hard disk cache is managed, i. e. CernVM-FS maintains cache size restrictions
and replaces files according to the least recently used (LRU) strategy [PS06]. In order
to keep track of files sizes and relative file access times, CernVM-FS sets up another
SQLite database in the cache directory, the cache catalog. The cache catalog contains
a single table; its structure is shown in Table 7.2.

CernVM-FS does not strictly enforce a the cache limit. Instead CernVM-FS
works with two customizable soft limits, the cache quota and the cache threshold. When
exceeding the cache quota, files are deleted until the overall cache size is less than or
equal to the cache threshold. The cache threshold is currently hard-wired to half of the
cache quota. The cache quota is for data files as well as file catalogs. Currently loaded
catalogs are pinned in the cache, i. e. they will not be deleted until unmount or until a
new repository revision is applied. On unmount, pinned file catalogs are updated with
the highest sequence number.

The cache catalog can be re-constructed from scratch on mount. Re-constructing
the cache catalog is necessary when the managed cache is used for the first time and
every time when “unmanaged” changes occurred to the cache directory, e. g. when

30

7. Implementation Notes

cvmfs2 processes cvmfs2 processes

Fuse Module

Cache Manager

Exclusive Cache

Anonymous Pipe

Fuse Module

Cache Manager
cvmfs2
shared
process

Named Pipe

Shared Cache

Figure 7.5.: The CernVM-FS shared local hard disk cache.

CernVM-FS was terminated unexpectedly. Re-construction has to be triggered
manually.

In case of an exclusive cache, the cache manager runs as a separate thread of the
cvmfs2 process. This thread gets notified by the Fuse module whenever a file is opened
or inserted. Notification is done through a pipe. The shared cache uses the very same
code, except that the thread becomes a separate process (see Figure 7.5). This cache
manager process is not another binary but cvmfs2 forks to itself with special arguments,
indicating that it is supposed to run as a cache manager. The cache manager does not
need to be started as a service. The first CernVM-FS instance that uses a shared
cache will automatically spawn the cache manager process. Subsequent CernVM-FS
instances will connect to the pipe of this cache manager. Once the last CernVM-FS
instance that uses the shared cache is unmounted, the communication pipe is left
without any writers and the cache manager automatically quits.

7.4. File System Traces
CernVM-FS has an optional file system operations tracer. The tracer creates logs of
usage, which can—for instance—be used as profiling information for pre-fetching. The
trace file is created in CSV format (see Figure 7.6).

The tracing runs in a separate thread and adapts the tread-safe trace buffer, a
technique used for multi-thread debugging [AR06, Chapter 8]. Since traces are kept
in a memory ring buffer3 and written to disk in blocks of thousands of lines, the
performance overhead for tracing is low.

3Usually, each trace record requires two atomic fetch-and-add operations.

31

7. Implementation Notes

"1481074921.015","1","/root/i686-pc-linux-gnu/include/TQObject.h","OPEN"
"1481074931.030","1","/root/i686-pc-linux-gnu/include/KeySymbols.h","OPEN"
"1481074931.220","3","/root/i686-pc-linux-gnu/include/KeySymbols.h","READ (TRY)"
"1481074964.565","3","/root/i686-pc-linux-gnu/include/KeySymbols.h","READ 7407@0"
"1481074965.005","1","/root/i686-pc-linux-gnu/include/TRootCanvas.h","OPEN"

Figure 7.6.: Example snippet of a trace log. The first columns stores time stamps as
number of microseconds starting from the Unix epoch. The second column
stores the event type. Negative event types are reserved for CernVM-FS
internal events.

7.5. NFS Maps
In normal mode, CernVM-FS issues inodes based on the row number of an entry in the
file catalog. When exported via NFS, this scheme can result in inconsistencies because
CernVM-FS does not control the cache lifetime of NFS clients. A once issued inode
can be asked for anytime later by a client. To be able to reply to such client queries
even after reloading catalogs or remounts of CernVM-FS, the CernVM-FS NFS
maps implement a persistent store of the path names ↦→ inode mappings. Storing them
on hard disk allows for control of the CernVM-FS memory consumption (currently
≈ 45MB extra) and ensures consistency between remounts of CernVM-FS. The
performance penalty for doing so is small. CernVM-FS uses Google’s leveldb [DG],
a fast, local key value store. Reads and writes are only performed when meta-data
are looked up in SQLite, in which case the SQLite query supposedly dominates the
running time.

A drawback of the NFS maps is that there is no easy way to account for them by
the cache quota. They sum up to some 150-200 Bytes per path name that has been
accessed. A recursive find on /cvmfs/atlas.cern.ch with 25 million entries, for instance,
would add up 5 GB in the cache directory. This is mitigated by the fact that the NFS
mode will be only used on few servers that can be given large enough spare space on
hard disk.

7.6. Loader
The CernVM-FS Fuse module comprises a minimal loader loader process (the cvmfs2
binary) and a shared library containing the actual Fuse module (libcvmfs_fuse.so).
This structure makes it possible to reload CernVM-FS code and parameters without
unmounting the file system. Loader and library don’t share any symbols except for two
global structs cvmfs_exports and loader_exports used to call each others functions.
The loader process opens the Fuse channel and implements stub Fuse callbacks that
redirect all calls to the CernVM-FS shared library. Hotpatch is implemented as
unloading and reloading of the shared library, while the loader temporarily queues all
file system calls in-between. Among file system calls, the Fuse module has to keep

32

7. Implementation Notes

very little state. The kernel caches are drained out before reloading. Open file handles
are just file descriptors that are held open by the process. Open directory listings are
stored in a Google dense_hash that is saved and restored.

7.7. File System Interface
Since CernVM-FS is a read-only file system, there are only few non-trivial call-back
functions to implement. These call-back functions provide the system interface.

7.7.1. mount

On mount, the file catalog has to be loaded. First, the file catalog manifest .cvmfspublished
is loaded. The manifest is only accepted on successful validation of the signature. In
order to validate the signature, the certificate and the white-list are downloaded in
addition if not found in cache. If the download fails for whatever reason, CernVM-FS
tries to load a local file catalog copy. As long as all requested files are in the disk cache
as well, CernVM-FS continues to operate even without network access (offline mode).
If there is no local copy of the manifest or the downloaded manifest and the cache copy
differ, CernVM-FS downloads a fresh copy of the file catalog.

7.7.2. getattr and lookup

Requests for file attributes are entirely served from the mounted catalogs, i. e. there
is no network traffic involved. This function is called as pre-requisite to other file
system operations and therefore the most frequently called Fuse callback. In order to
minimize relatively expensive SQLite queries, CernVM-FS uses a hash table to store
negative and positive query results. The default size of 16 MB for this memory cache
is determined according to compilation benchmarks.

Additionally, the callback takes care of the catalog TTL. If the TTL is expired, the
catalog is re-mounted on the fly. Note that a re-mount might possibly break running
programs. We rely on careful repository publishers that produce more or less immutable
directory trees, i. e. new repository versions just add files.

If a directory with a nested catalog is accessed for the first time, the respective catalog
is mounted in addition to the already mounted catalogs. Loading nested catalogs is
transparent to the user.

7.7.3. readlink

A symbolic link is served from the file catalog. As a special extension, CernVM-
FS detects environment variables in symlink strings written as $(VARIABLE). These
variables are expanded by CernVM-FS dynamically on access (in the context of the
cvmfs2 process). This way, a single symlink can point to different locations depending
on the environment. This is helpful, for instance, to dynamically select software package
versions residing in different directories.

33

7. Implementation Notes

7.7.4. readdir

A directory listing is served by a query on the file catalog. Although the “parent”-column
is indexed (cf. Table 7.1), this is a relatively slow function. We expect directory listing
to happen rather seldom.

7.7.5. open / read

The open() call has to provide a file descriptor for a given path name. In CernVM-FS
file requests are always served from the disk cache. The Fuse file handle is a file
descriptor valid in the context of the CernVM-FS process. It points into the disk
cache directory. Read requests are translated into the pread() system call.

7.7.6. getxattr

CernVM-FS uses extended attributes to display additional repository information.
There are two supported attributes:

expires Shows the remaining life time of the mounted root file catalog in minutes.

fqrn Shows the fully qualified repository name of the mounted repository.

hash Shows the SHA-1 hash of a regular file as listed in the file catalog.

host Shows the currently active HTTP server.

lhash Shows the SHA-1 hash of a regular file as stored in the local cache, if available.

maxfd Shows the maximum number of file descriptors available to file system clients.

nclg Shows the number of currently loaded nested catalogs.

ndiropen Shows the overall number of opened directories.

ndownload Shows the overall number of downloaded files since mounting.

nioerr Shows the total number of I/O errors encoutered since mounting.

nopen Shows the overall number of open() calls since mounting.

pid Shows the process id of the CernVM-FS Fuse process.

proxy Shows the currently active HTTP proxy.

revision Shows the file catalog revision of the mounted root catalog, an auto-increment
counter increased on every repository publish.

root_hash Shows the SHA-1 hash of the root file catalog.

rx Shows the overall amount of downloaded kilobytes.

34

7. Implementation Notes

speed Shows the average download speed.

timeout Shows the timeout for proxied connections in seconds.

timeout_direct Shows the timeout for direct connections in seconds.

uptime Shows the time passed since mounting in minutes.

usedfd Shows the number of file descriptors currently issued to file system clients.

version Shows the version of the loaded CernVM-FS binary.

Extended attributes can be queried using the attr command. For instance, attr -g
hash /cvmfs/atlas.cern.ch/ChangeLog returns the SHA-1 key of the file at hand.
The extended attributes are used by the cvmfs_config stat command in order to
show a current overview of health and performance numbers.

7.8. Repository Publishing
Repositories are not immutable, every now and then they get updated. This might be
installation of a new release or a patch for an existing release. But, of course, each time
only a small portion of the repository is touched, say 2 GB out of 100 GB. In order not
to re-process an entire repository on every update, we create a read-write file system
interface to a CernVM-FS repository where all changes are written into a distinct
scratch area.

7.8.1. Read-write Interface using a Union File System
Union file systems combine several directories into one virtual file system that provides
the view of merging these directories. These underlying directories are often called
branches. Branches are ordered; in the case of operations on paths that exist in multiple
branches, the branch selection is well-defined. By stacking a read-write branch on top
of a read-only branch, union file systems can provide the illusion of a read-write file
system for a read-only file system. All changes are in fact written to the read-write
branch.

Preserving POSIX semantics in union file systems is non-trivial; the first fully
functional implementation has been presented by Wright et al. [WDG+04]. By now,
union file systems are well established for “Live CD” builders, which use a RAM disk
overlay on top of the read-only system partition in order to provide the illusion of a
fully read-writable system. CernVM-FS uses the AUFS union file system. Another
union file system with similar semantics can be plugged in if necessary.

Union file systems can be used to track changes on CernVM-FS repositories (Fig-
ure 7.8.1). In this case, the read-only file system interface of CernVM-FS is used in
conjunction with a writable scratch area for changes.

Based on the read-write interface to CernVM-FS, we create a feed-back loop that
represents the addition of new software releases to a CernVM-FS repository. A repository

35

7. Implementation Notes

CernVM-FS Read-Only

Read/Write Scratch Area

AUFS
(Union File System)

Read/Write
Interface

Figure 7.7.: A union file system combines a CernVM-FS read-only mount point and a
writable scratch area. It provides the illusion of a writable CernVM-FS
mount point, tracking changes on the scratch area.

in base revision 𝑟 is mounted in read-write mode on the publisher’s end. Changes are
written to the scratch area and, once published, are re-mounted as repository revision
𝑟 + 1. In this way, CernVM-FS provides snapshots. In case of errors, one can safely
resume from a previously committed revision.

36

A. Available RPMs

The CernVM-FS software is available in form of several RPM packages:

cvmfs-release Adds the CernVM-FS yum repository.

cvmfs-keys Contains the public key for signature verification of repositories in the
cern.ch domain.

cvmfs Contains the Fuse module and additional client tools. It has dependencies to
cvmfs-keys, fuse, and autofs.

cvmfs-init-scripts Contains special settings for some of the repositories. For instance,
the ATLAS nightly builds are provided by a URL other than the other repositories
in cern.ch. Depends on cvmfs.

cvmfs-auto-setup Only available through yum. This is a wrapper for cvmfs_config
setup. This is supposed to provide automatic configuration for the ATLAS
Tier3s. Depends on cvmfs.

cvmfs-server Contains the CernVM-FS server tool kit for maintaining Stratum 0
and Stratum 1 servers. Depends on cvmfs-keys and httpd.

kernel-aufs21-· · · Scientific Linux 6 kernel with aufs. Required for SL6 based Stratum 0
servers.

37

B. CernVM-FS Parameters

B.1. Client parameters
Parameters recognized in configuration files under /etc/cvmfs:

Parameter Meaning

CVMFS_AUTO_UPDATE If set to “no”, disables the automatic update of file
catalogs.

CVMFS_BACKOFF_INIT Seconds for the maximum initial backoff when retrying
to download data.

CVMFS_BACKOFF_MAX Maximum backoff in seconds when retrying to down-
load data.

CVMFS_CACHE_BASE Location (directory) of the CernVM-FS cache.
CVMFS_CHECK_PERMISSIONS If set to “no”, disable checking of file ownership and

permissions (open all files).
CVMFS_DEBUGLOG If set, run CernVM-FS in debug mode and write a

verbose log the the specified file.
CVMFS_DEFAULT_DOMAIN The default domain will be automatically appended

to repository names when given without a domain.
CVMFS_HTTP_PROXY Chain of HTTP proxy groups used by CernVM-FS.
CVMFS_IGNORE_SIGNATURE When set to “yes”, don’t verify CernVM-FS file

catalog signatures.
CVMFS_KCACHE_TIMEOUT Timeout for path names and file attributes in the

kernel file system buffers.
CVMFS_MAX_RETRIES Maximum number of retries for a given proxy/host

combination.
CVMFS_MAX_TTL Maximum file catalog TTL in minutes. Can overwrite

the TTL stored in the catalog.
CVMFS_MEMCACHE_SIZE Size of the CernVM-FS meta-data memory cache

in Megabyte.
CVMFS_NFILES Maximum number of open file descriptors that can

be used by the CernVM-FS process.
CVMFS_NFS_SOURCE If set to “yes”, act as a source for the NFS daemon

(NFS export).
CVMFS_PROXY_RESET_AFTER Delay in seconds after which CernVM-FS will retry

the primary proxy group in case of a fail-over to
another group.

CVMFS_PUBLIC_KEY Colon-separated list of repository signing keys.

38

B. CernVM-FS Parameters

CVMFS_QUOTA_LIMIT Soft-limit of the cache in Megabyte.
CVMFS_RELOAD_SOCKETS Directory of the sockets used by the CernVM-FS

loader to trigger hotpatching/reloading.
CVMFS_REPOSITORIES Comma-separated list of fully qualified repository

names that shall be mountable under /cvmfs.
CVMFS_ROOT_HASH Hash of the root file catalog, implies

CVMFS_AUTO_UPDATE=no.
CVMFS_SERVER_URL Semicolon-separated chain of Stratum 1 servers.
CVMFS_SHARED_CACHE If set to “no”, makes a repository use an exclusive

cache.
CVMFS_STRICT_MOUNT If set to “yes”, mount only repositories that are listed

in CVMFS_REPOSITORIES.
CVMFS_SYSLOG_FACILITY If set to a number between 0 and 7, uses the corre-

sponding LOCAL𝑛 facility for syslog messages.
CVMFS_SYSLOG_LEVEL If set to 1 or 2, sets the syslog level for CernVM-FS

messages to LOG_DEBUG or LOG_INFO respec-
tively.

CVMFS_TIMEOUT Timeout in seconds for HTTP requests with a proxy
server.

CVMFS_TIMEOUT_DIRECT Timeout in seconds for HTTP requests without a
proxy server.

CVMFS_TRACEFILE If set, enables the tracer and trace file system calls to
the given file.

CVMFS_USER Sets the gid and uid mount options. Don’t touch or
overwrite.

B.2. Server parameters

tbd

39

Bibliography

[AO10] Grant Allen and Mike Owens. The Definitive Guide to SQLite. Apress,
2nd edition edition, 2010.

[AR06] Shameem Akhter and Jason Roberts. Multi-Core Programming. Intel Press,
2006.

[BDLW08] Barry Blumenfeld, David Dykstra, Lee Lueking, and Eric Wicklund. CMS
conditions data access using FroNTier. Journal of Physics: Conference
Series, 119, 2008.

[BLFF96] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol
– HTTP/1.0. RFC 1945, Internet Engineering Task Force, May 1996.

[CGL+10] G. Compostella, S. Pagan Griso, D. Lucchesi, I. Sfiligoi, and D. Thain.
CDF software distribution on the Grid using Parrot. Journal of Physics:
Conference Series, 219, 2010.

[CPS95] B. Callaghan, B. Pawlowski, and P. Staubach. NFS Version 3 Protocol
Specification. RFC 1813, Internet Engineering Task Force, June 1995.

[Dan] Daniel Stenberg et al. libcurl. http://curl.haxx.se/libcurl.

[DG] Jeffrey Dean and Sanjay Ghemawat. leveldb. http://code.google.com/
p/leveldb/.

[DG96] P. Deutsch and J-L. Gailly. ZLIB Compressed Data Format Specification
version 3.3. RFC 1950, Internet Engineering Task Force, May 1996.

[DL10] D. Dykstra and L. Lueking. Greatly improved cache update times for
conditions data with frontier/squid. Journal of Physics: Conference Series,
219, 2010.

[FCAB00] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder. Summary cache:
A scalable wide-area web cache sharing protocol. IEEE/ACM Transactions
on Networking, 8(3):281–293, June 2000.

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616,
Internet Engineering Task Force, June 1999.

[Gue99] David Guerrero. Caching the web, part 2. Linux Journal, (58), Feburary
1999.

40

http://curl.haxx.se/libcurl
http://code.google.com/p/leveldb/
http://code.google.com/p/leveldb/

[HS] Csaba Henk and Miklos Szeredi. Filesystem in Userspace (FUSE). http:
//fuse.sourceforge.net.

[Moc87] P.V. Mockapetris. Domain names - implementation and specification. RFC
1035, Internet Engineering Task Force, November 1987.

[Oka] Junjiro R. Okajima. Aufs - Advanced multi layered Unification FileSystem.
http://aufs.sourceforge.net/.

[PS06] Konstantinos Panagiotou and Alexander Souza. On adequate performance
measures for paging. Annual ACM Symposium on Theory Of Computing,
38:487–496, 2006.

[Riv92] R. Rivest. The MD5 Message-Digest Algorithm. RFC 1321, Internet
Engineering Task Force, April 1992.

[SBG+08] Max Schubert, Derrick Bennett, Jonathan Gines, Andrew Hay, and John
Strand. Nagios 3 Enterprise Network Monitoring. Syngress, 2008.

[SCR+03] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler,
and D. Noveck. Network File System (NFS) version 4 Protocol. RFC 3530,
Internet Engineering Task Force, April 2003.

[TC11] S. Turner and L. Chen. Updated Security Considerations for the MD5
Message-Digest and the HMAC-MD5 Algorithms. RFC 6151, Internet
Engineering Task Force, 2011.

[The] The OpenSSL Software Foundation. OpenSSL. http://www.openssl.
org/docs/crypto/crypto.html.

[TL05] Douglas Thain and Miron Livny. Parrot: an application environment for
data-intensive computing. Scalable Computing: Practice and Experience,
6(3):9, 18 2005.

[WDG+04] Charles P. Wright, Jay Dave, Puja Gupta, Harikesavan Krishnan, Erez
Zadok, and Mohammad Nayyer Zubair. Versatility and unix semantics
in a fan-out unification file system. Technical Report FSL-04-01b, Stony
Brook University, 2004.

41

http://fuse.sourceforge.net
http://fuse.sourceforge.net
http://aufs.sourceforge.net/
http://www.openssl.org/docs/crypto/crypto.html
http://www.openssl.org/docs/crypto/crypto.html

	Overview
	Getting Started
	Getting the Software
	Installation
	Linux
	Mac OS X

	Usage
	Debugging Hints

	Client Configuration
	Structure of /etc/cvmfs
	Mounting
	Private Mount Points

	Cache Settings
	Network Settings
	Stratum 1 List
	Proxy Lists
	Timeouts

	NFS Server Mode
	Hotpatching and Reloading
	Auxiliary Tools
	cvmfs_fsck
	cvmfs_config
	cvmfs_talk
	Other

	Debug Logs

	Setting up a Local Squid Proxy
	Creating a Repository (Stratum 0)
	Publishing a new Repository Revision
	Requirements for a new Repository
	CernVM-FS Repository Creation and Updating
	Repository Creation
	Repository Update

	Setting up a Replica Server (Stratum 1)
	Recommended Setup
	Squid Configuration
	Monitoring

	Implementation Notes
	File Catalog
	Nested Catalogs
	Catalog Statistics
	Catalog Signature

	Use of HTTP
	DoS Protection
	Keep-Alive
	Cache Control
	Identification Header

	Disk Cache
	File System Traces
	NFS Maps
	Loader
	File System Interface
	mount
	getattr and lookup
	readlink
	readdir
	open / read
	getxattr

	Repository Publishing
	Read-write Interface using a Union File System

	Available RPMs
	CernVM-FS Parameters
	Client parameters
	Server parameters

	Bibliography

